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UNCERTAINTY PREDICTION IN 

PASSIVE TARGET MOTION ANALYSIS 

STATEMENT OF GOVERNMENT INTEREST 

[0001] The invention described herein may be manufactured and 

used by or for the Government of the United States of America 

for governmental purposes without the payment of any royalties 

thereon or therefor. 

CROSS REFERENCE TO OTHER PATENT APPLICATIONS 

[0002] None. 

BACKGROUND OF THE INVENTION 

(1) Field of the Invention 

[0003] The present invention is directed to a target motion 

analysis system and method and more particularly to a target 

motion analysis system that indicates uncertainty. 

(2) Description of the Prior Art 

[0004] In the bearing only target motion analysis (TMA) 

problem, one must estimate the position and velocity of a 

constant velocity target from bearing observations.  FIG. 1 

shows use of a target motion analysis system.  A target 10 is 

positioned at an unknown location and following an unknown 

course relative to an observer 12.  Observer 12 has a sensor 

array such as a passive sonar or radar array 14 that can receive 

a signal radiating from target 10.  Observer 12 also has 
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environmental sensors 16 and a database 18.  Array 14, sensors 

16, and database 18 are all connected to a processor 20.  User 

input 22 can also be provided to processor 20. Processor 20 is 

capable of beamforming data from the sensor array 14 in order to 

provide bearings from the observer 12 to the target 10.  

Processor 20 can also utilize information from the array 14, 

database 18, user input 22 and/or environmental sensors 16 to 

provide an estimate of the bearing and range to target 10. 

[0005] The target motion analysis system 24 receives 

information from processor 20 to provide a TMA solution.  This 

solution is comprised of parameters such as the range, bearing, 

course and speed of the target. The target motion analysis 

system 24 can be a routine implemented on processor 20.  The 

solution is provided for display on a suitable display device or 

for use by other systems. 

[0006] As shown in FIG. 2, target range R and bearing B 

define the position of the target 10 relative to that of the 

observer 12, and target course C and speed S define the velocity 

of the target 10 as it transits through the space.  Target state 

is defined as 𝑥̅(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑥̇, 𝑦̇]𝑇 where x(t) and y(t) are Cartesian 

coordinates of the target with respect to time, and 𝑥̇ and 𝑦̇ are 

components of the target velocity. 

[0007] As is well known, a fundamental property of bearings-

only target motion analysis (TMA) is that bearing B to the 
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target 10 results directly from sensor system output, but the 

range R to the target 10 must be inferred from additional data. 

This additional data can be obtained by maneuvering the observer 

12 having the sensor system.  A single-leg of observer motion 

only provides a partial target motion solution. (A leg is 

defined as a time interval of constant platform velocity.) 

[0008] In addition to a point estimate of the current target 

state, a representation of the resulting uncertainty in the 

solution is required. The positional uncertainty is usually 

defined by an area of uncertainty (AOU) about the target 10 

shown as dashed line 28. Uncertainty characterizations regarding 

other parameters may be required as well. For example, the 

uncertainty related to target velocity, comprised of the 

target's course and speed, can also be indicated. 

[0009] Observations of contact state are imperfect.  This can 

be modeled by representing the observation as a mapping from the 

true contact state corrupted by additive noise. 

𝑧𝑚 = 𝐵𝑚(𝑥̅(𝑡𝑚)) + 𝜂𝑚 (1) 

where 𝑥̅(𝑡𝑚) denotes the target state at time tm from which the 

estimated bearing, zm, is measured as a function of the true 

bearing, 𝐵𝑚(𝑥̅(𝑡𝑚)). The observation error, ηm, is assumed to be 

independent and identically distributed over the ensemble of 

observations, η~N(0,σ
2
), with σ denoting the standard deviation of 



Attorney Docket No. 300118 

4 of 25 

 

the error.  An estimate of the target state, 𝑥̂, can be developed 

by processing a collection of observations, 𝑍 = [𝑧1, 𝑧2, … , 𝑧𝑀], using 

any of a number of commonly accepted estimation methods. For an 

estimated target track to be considered plausible, it must fit 

the data reasonably well.  A standard measure of the goodness-

of-fit is the sum squared error, 

𝐽(𝑥̂) = ∑ (𝑧𝑚 − 𝑧̂𝑚)2.

𝑀

𝑚=1

 
(2) 

[0010] The mathematical relationships denoting dynamic 

vehicular motion and the mapping between target states and the 

measurements used to estimate them are often non-linear. This is 

true for the bearing observation: 

𝐵𝑚 = tan−1 (
𝑟𝑥(𝑡𝑚)

𝑟𝑦(𝑡𝑚)
) 

(3) 

where 

𝑟𝑥(𝑡𝑚) = x(𝑡𝑚) − x0(𝑡𝑚) (4) 

𝑟𝑦(𝑡𝑚) = y(𝑡𝑚) − y0(𝑡𝑚) (5) 

with (x, y) and (x0, y0) denoting the coordinates of the target and 

the observer at time tm. Hence, direct analytical expressions for 

estimated values cannot always be obtained and iterative 

estimation processes must be developed in order to converge to 

an acceptable solution. One such method applies a Gauss-Newton 
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approach to the iteration process. For these types of 

algorithms, the state vector estimated is adjusted with each 

iteration by an amount proportional to the change in cost 

function, as in equation 2, that is dictated by the gradient at 

the current estimate. This iteration takes the form 

𝑥̂𝑖+1 = 𝑥̂𝑖 + s ∙ g𝑖   (6) 

where i denotes the iteration number and s denotes a scale factor 

referred to as the step-size. When the measurement error over a 

batch of data can be assumed to be independent and identically 

distributed, a Gauss-Newton approximation to the cost function gi 

will yield the vector equations: 

𝑔𝑖 = [𝑨𝑇𝑨]−1𝑨𝑇(𝑍 − 𝑍̂) (7) 

where A denotes an (M x N) gradient matrix of partial 

derivatives defining the change in measurement with the change 

in state, 

𝑨 = [
𝜕𝑧𝑚

𝜕𝑥𝑛
], 

(8) 

for m = 1, . . . , M measurements and n = 1, . . . , N state 

vector components. 

[0011] One standard approach to solve for the vector gi is to 

apply the Householder transformation in equation 7 to reduce the 

solution to a back substitution process. The Householder denotes 

an orthogonal, idempotent transformation of a vector in its 
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native coordinates onto a coordinate system with a single non-

zero component. When applied to a matrix, it is only the first 

column that is reflected to a single entry basis. Hence, the 

transformation is applied sequentially until each component of 

the state vector has gone through a reflection process. The 

combined transformation yields a transformation matrix, T, with 

the property that TT T = I. the N-dimensional identity matrix. 

This transformation matrix T is not actually calculated, only the 

result of the transformation is calculated. When applied to 

gradient matrix A, the result is a partition into a non-zero 

upper triangular square matrix R and a remaining component 

comprised of zero values. 

𝑻𝑨 = [
𝑹
0

], (9) 

Assuming A is non-singular (i.e., that all the components of 𝑥̂ 

are observable from the data), then application of the 

Householder transformation into equation 7 yields the back 

substitution equation: 

𝑔𝑖 = [𝑨𝑇𝑻𝑻𝑻𝑨]−1𝑨𝑇𝑻𝑇𝑻(𝑍 − 𝑍̂) = 𝑹−1𝑹−𝑇𝑹𝑇𝑧̂𝑒 = 𝑹−1𝑧̂𝑒 (10) 

The error vector 𝑧̂𝑒 denotes the first n components of the result 

obtained by applying transformation T to the residual vector 

T(𝑍 − 𝑍̂)=[𝑧̂𝑒𝑧̂𝑟].  The upper triangular nature of the matrix R 

means that the components gi can be solved for sequentially via a 
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back substitution.  Iteration in 𝑥̂𝑖 continues until the 

improvement in J(𝑥̂) becomes insignificant in the applied 

termination criterion. 

[0012] In many state estimation problems, the representation 

and visualization of uncertainty in state estimates is a 

significant part of the estimation process. In the case of 

Kalman filter and its many extensions, the uncertainty of states 

is assumed to be Gaussian. While this is useful computationally, 

it is very often inadequate for characterizing the accuracy of 

estimates when data quality is low and the estimation problem is 

nonlinear. In recent years, alternatives have been developed. 

Unscented Kalman filter have improved uncertainty 

characterization. Particle filters have addressed this issue by 

calculating the uncertainty numerically through the ensemble of 

states represented by the particles. These particles can then be 

projected to lower dimensional spaces to illustrate the 

uncertainty to an end user. However, particle representations of 

uncertainty can be very expensive computationally. 

[0013] Another alternative are purely grid based methods 

which consider a discrete subset of the state space as potential 

solution and then produce error surfaces at the prescribed 

resolution. If well-conceived, grid based approaches can allow 

an efficient view of state uncertainty, even with some of the 

parameters being unobservable. In the case of bearings-only 
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target motion analysis the Parameter Evaluation Plot (PEP) is 

one example of such a grid-based approach. U.S. Patent No. 

7,020,046 discloses one version of this method and is 

incorporated herein.  The PEP algorithm utilizes the endpoint 

coordinate system defining the position of the target relative 

to the observer at each of two times. The base algorithm has 

been a standard method for target motion analysis (TMA) for many 

years and various approaches have been applied to improve it. 

This is shown in FIG. 3 where B1 and R1 denote the bearing and 

range from observer 12A to the target 10A at time t1, and B2 and 

R2 denote the bearing and range from observer 12B to target 10B 

at time t2 as indicated in FIG. 3. Between times t1 and t2, 

observer 12A has traveled over the path shown at 16.  Assuming 

constant direction and velocity for target 12A gives the 

estimated path 18 over the same time period.  For bearings only 

estimation in endpoint coordinates, 𝑥̂ = [𝐵̂1, 𝑅̂1, 𝐵̂2, 𝑅̂2] must be 

determined. The position of the target 10 relative to the 

observer 12 at arbitrary time tm is given by: 

𝑟𝑥(𝑡𝑚) = ∆𝑇1𝑅1 sin(B1) + ∆𝑇2𝑅2 sin(B2) + x0(𝑡𝑚) (11) 

𝑟𝑦(𝑡𝑚) = ∆𝑇1𝑅1 cos(B1) + ∆𝑇2𝑅2 cos(B2) + y0(𝑡𝑚) (12) 

Here ∆𝑇1 = (𝑡2 − 𝑡𝑚)/∆𝑇 and ∆𝑇2 = (𝑡𝑚 − 𝑡1)/∆𝑇 denote the time 

displacement between the times that the observations are made 

and the respective endpoint timelines, normalized by the time 
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interval between the timelines, ∆𝑇 = (𝑡2 − 𝑡1).  The observer 

displacements: 

∆x0(𝑡𝑚) = ∆𝑇2x0(𝑡1) + ∆𝑇1x0(𝑡2) − x0(𝑡𝑚) (13) 

∆y0(𝑡𝑚) = ∆𝑇2y0(𝑡1) + ∆𝑇1y0(𝑡2) − y0(𝑡𝑚) (14) 

denote deviations of the observer trajectory from a straight 

line between the observer positions at the respective time 

lines.  Hence the bearing relation expressed in endpoint 

coordinates becomes 

𝐵𝑚 = tan−1 (
∆𝑇1𝑅1 sin(B1) + ∆𝑇2𝑅2 sin(B2) + x0(𝑡𝑚)

∆𝑇1𝑅1 cos(B1) + ∆𝑇2𝑅2 cos(B2) + y0(𝑡𝑚)
). 

(15) 

[0014] When the endpoint bearings B1 and B2 are assumed to be 

known and fixed values can be assigned to them, the PEP 

estimation problem reduces to two-dimensional search for the 

best R1 and R2 tracking parameters. In this case, the goodness-

of-fit can be evaluated directly over the endpoint range 

parameter space. Goodness-of-fit is measured according to the 

RMS performance criterion given by: 

𝑅𝑀𝑆(𝑥̂) = √
1

𝑁
𝐽(𝑥̂𝑖).  

(16) 

[0015] This approach is intuitive in that it considers fixed 

values for directly observed states and calculates the cost 

function over a gridded sampling of the unobserved states. The 
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resultant cost function, shown in FIG. 4, illustrates a two-

dimensional slice of the higher dimensional cost function. The 

problem with this approach is that choosing the fixed values can 

be complicated with no single set of values being representative 

over the whole state space. That is, the selection of two 

observed values is sensitive to the accuracy of the 

observations. Generalized statements can be made about FIG. 4.  

Due to practical constraints, extreme range variations between 

ranges R1 and R2 are unlikely resulting in a high cost function 

near the axis.  A low cost function is given by intermediate low 

ranges with little variation since these smaller range changes 

are more plausible. 

SUMMARY OF THE INVENTION 

[0016] It is a first object of the present invention to 

provide a bearings-only target motion analysis method. 

[0017] Another object is to provide such a method that 

accurately expresses the uncertainty caused by weakly observable  

parameters. 

[0018] Yet another object is to provide such a method that 

uses likelihoods to compute target motion and uncertainty in an 

efficient manner.    

[0019] Accordingly, there is provided a method for target 

motion analysis for calculating the track between an observer 
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and a target includes initializing strongly observable state 

components into strong state vectors and weakly observable state 

components to form a weak state analysis grid.  Initial 

probability density functions are calculated over the weak state 

grid using strong state components.  The method then iteratively 

calculates strong state gradients, target track direction, and 

updates strong state vectors over the analysis grid.  

Probability density functions are recalculated.  Calculations 

are reiterated if the probability density functions change more 

than an information threshold.  The strong state vectors and 

weak state probability density functions are provided as output 

if the information threshold is not exceeded. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0020] Reference is made to the accompanying drawings in 

which are shown an illustrative embodiment of the invention, 

wherein corresponding reference characters indicate 

corresponding parts, and wherein: 

[0021] FIG. 1 is a diagram of a typical target motion 

analysis system; 

[0022] FIG. 2 is a graph showing target motion analysis 

parameters; 

[0023] FIG. 3 is another graph showing target motion analysis 

as the observer and target move through time;  
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[0024] FIG. 4. is a graph showing the cost function related 

to the initial range and the final range; 

[0025] FIG. 5 is a block diagram of the target motion 

analysis method; 

[0026] FIG. 6A and 6B are graphs showing target motion 

analysis under the prior art method; and 

[0027] FIG. 7A and 7B are graphs showing target motion 

analysis under the current method. 

DETAILED DESCRIPTION OF THE INVENTION 

[0028] The method provided herein develops a more robust 

target motion analysis solution estimate and provides an 

improved characterization of uncertainty in tracking parameter 

estimates.  The method operates over a tensor product space.  

Our general assumption is that the state space can be 

partitioned into two components (or subspaces). One part of the 

state space, Ss, corresponds to those state components that are 

strongly observable. Over this subspace, parameter estimates can 

be readily obtained via gradient based estimation methods such 

as steepest descent, Gauss-Newton and Newton-Raphson. In the 

other part of the state space, Sw, the state vector components 

are considered only weakly observable. For these, applying 

gradient based estimation methods can be problematic with regard 

to gradient stability and algorithm convergence. The method 
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herein treats the strongly observable states as continuous 

random variables in Ss while the weakly observable states are 

represented by a collection of discrete samples distributed over 

the subspace Sw.  The tensor product space comprises the cross 

product of these continuous and sampled variables S = Ss ⊗ Sw. 

The method herein utilizes a non-linear estimation algorithm 

that jointly exploits gradient based and direct search 

estimation methods in a manner that provides a robust 

algorithmic stability while expediting the convergence rate of 

the algorithm. 

[0029] This method generates an efficient and informative 

uncertainty representation for visualizing solution (state) 

sensitivity over the weakly observable states.  A depiction of 

the general approach of the invention is depicted in FIG. 5. For 

general application, the modeling paradigm might include 

additional parameters whereby unknown modeling parameters, 𝑚̅, are 

adjoined to the strongly observable state components, 𝑥̅𝑠, such 

that for each weakly observable state component 𝑥̅𝑤
𝑘, k = 1, 2…, K, 

the vector 𝑥̃𝑘 = [𝑥̅𝑠
𝑘 , 𝑚̅] that minimizes the performance index is 

determined. Conditioning on the weakly observable states 

improves the efficiency of the estimation process. It is assumed 

that any modeling parameters 𝑚̅ that are adjoined to the strongly 

observable states, 𝑥̅𝑠, will yield an estimation vector 𝑥̃ of 
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dimension 𝑁̃ that remains strongly observable such that gradient 

based estimation methods remain applicable. 

[0030] Parameter estimates of 𝑥̃𝑘 are formed for each weak 

state sample point by applying the non-linear gradient based 

estimation methods to the observation data Z. This provides a 

stable mechanism for maximizing the goodness-of-fit to the 

observed data at each of the sample points. As a consequence, 

parameter estimates of 𝑥̃𝑘 will vary across the set of sample 

points, 𝑥̃𝑘. In this way, the plausibility of each of the sample 

points is maximized. These estimates are then used to develop a 

measure of the uncertainty over the weakly observable subspace 

Sw. 

[0031] When our improved estimation method is applied to the 

endpoint coordinate system without any additional modeling 

parameters, the endpoint bearings constitute the strongly 

observable states, 𝑥̅𝑠 = [𝐵1, 𝐵2], as tiedown bearings are directly 

observable. The standard approach to the PEP algorithm is to 

adopt measured bearings at the prescribed endpoint times. Target 

range must be determined from the bearing data and, depending 

upon the geometry applied to collect the data, can be weakly 

observable. Hence, 𝑥̅𝑤 = [𝑅1, 𝑅2] denotes the weakly observable 

component of the state vector that is sampled over the 𝑅1, 𝑅2 grid 

associated with the PEP. When the bearing tiedowns are optimized 
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for each sample 𝑥̅𝑤
𝑘, a distinct set of bearing tiedowns may be 

calculated for each 𝑅1, 𝑅2 grid point. Our approach to improved 

uncertainty representation in this endpoint range space is to 

apply these distinct values in the calculation of the PEP RMS 

cost function that is displayed. 

[0032] The approach above improves on the typical grid 

approach to displaying uncertainty in that refinement in the 

observed parameters gives a more informative slice of the total 

state space uncertainty. The method herein gives a more robust 

representation of the range parameters than in the case of the 

PEP surface shown in FIG. 4. Once the subspace likelihood has 

been expanded to its plausible extent via maximum likelihood 

estimation of 𝑥̃, the parametric uncertainty can be projected to 

any other subspace of interest. 

[0033] Computational efficiency is obtained by noting that 

not all the grid points yield the same impact on the uncertainty 

representation. It is inefficient to iterate extensively in 

order to fit the best observed parameters for each grid point 

independent of their contribution to the uncertainty 

representation. 𝑅1, 𝑅2 grid points that correspond to implausible 

or unlikely tracks will have little impact on the overall 

uncertainty representation. To address this, each step in the 

estimation process is performed simultaneously for each sampled 

grid point. At each iteration in the estimation process, the 
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likelihood function that is produced over the weak state 

subspace Sw given the current iteration is calculated and 

compared to that attained in the previous iteration. The 

quantitative measure employed for this comparison is the 

Kullback-Leibler divergence. It is known in many information 

theoretic and statistical estimation contexts.  If the 

difference in the measure over the 𝑅1, 𝑅2 grid is significant, the 

iterative estimation process is allowed to continue. If it is 

not, the process is terminated thereby saving many iteration 

calculations that might be executed at sampled values with a 

poor goodness-of-fit measure. 

[0034] This approach has two by-products. One is that it 

provides a completely parallel process of iterations over the 

grid. This promotes computational savings as parallelization 

methods become more mature in software development products. 

Secondly, it has the effect of drastically reducing the total 

iterations required since tracks (grid points) which do not 

significantly impact the uncertainty representation can be 

stopped prior to achieving a local minimum. That is, unnecessary 

computation is not utilized to calculate implausible tracks. 

[0035] This method incorporates all the aspects described 

above with some very important extensions. As mentioned above, 

the state vector is partitioned into two components governed by 

how strongly or weakly the component vectors are. For the weakly 
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observable components, an ensemble of samples is methodically 

drawn over the weak parameter subspace. With augmentation by the 

strong component for each track, an ensemble of feasible tracks 

is developed. The strong set parameters are estimated using the 

standard estimation methods to maximize the plausibility of the 

weak set. In developing the strong set parameters using gradient 

based methods, the calculation of gradients is extended from a 

two dimensional array over the measurement set and the states of 

the parameter estimate to a three dimensional matrix formulation 

spanning the set of tracks included in the methodical grid 

sampling as well as the measurement set and state variable 

components. 

[0036] In this extension, A, now denotes a (K × M × N) 

gradient matrix of partial derivatives. This gradient matrix can 

be formulated such that each row corresponds to a track index k, 

each column corresponds to a measurement index, m.  Each sheet 

is associated with the single component, 𝑥̃(𝑛), of the state 

variable 𝑥̃. Each gradient sheet comprises the subset of 

gradients, 

𝑨𝒏 = [
𝜕𝑧𝑚(𝑥̃, 𝑥̅𝑤

𝑘 )

𝜕𝑥̃(𝑛)
], 

(17) 

with 𝑨𝑛 = 𝑨(: , : , 𝑛). The track parameter index n, varies 

orthogonally to the sheets. 
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Following equation 15, the gradients for the PEP endpoint 

bearings are calculated for each bearing measurement Bm and track 

combination 𝑥̅𝑤
𝑘 as: 

𝜕𝐵𝑚

𝜕𝐵1
= (𝑅1

𝑘cos (B1)∆𝑇2𝑟𝑦
𝑘(𝑡𝑚) + 𝑅1

𝑘sin (B1)∆𝑇2𝑟𝑥
𝑘(𝑡𝑚))/𝑟𝑘(𝑡𝑚) 

(18) 

𝜕𝐵𝑚

𝜕𝐵2
= (𝑅2

𝑘cos (B2)∆𝑇1𝑟𝑦
𝑘(𝑡𝑚) + 𝑅2

𝑘sin (B2)∆𝑇1𝑟𝑥
𝑘(𝑡𝑚))/𝑟𝑘(𝑡𝑚) 

(19) 

where 𝑟𝑥(𝑡𝑚) and 𝑟𝑦(𝑡𝑚) are calculated as: 

𝑟𝑥
𝑘(𝑡𝑚) = ∆𝑇1𝑅1

𝑘 sin(B1) + ∆𝑇2𝑅2
𝑘 sin(B2) + ∆x0(𝑡𝑚) (20) 

𝑟𝑦
𝑘(𝑡𝑚) = ∆𝑇1𝑅1

𝑘 cos(B1) + ∆𝑇2𝑅2
𝑘 cos(B2) + ∆y0(𝑡𝑚) (21) 

following equations 11 and 12 with range at time tm for track k 

given by: 

𝑟𝑘(𝑡𝑚) = √𝑟𝑥
𝑘(𝑡𝑚)2 + 𝑟𝑦

𝑘(𝑡𝑚)2 
(22) 

Note that the observer trajectory deviations, ∆x0(𝑡𝑚) and ∆y0(𝑡𝑚) 

are identical for each track k. 

[0037] When the Householder transformation is applied to this 

construct, it is calculated in parallel over the track set 

{𝑥̅𝑤
𝑘 }𝑘=1

𝐾 . The vectorised Householder is applied sequentially over 

the 𝑁̃ sheets associated with 𝑥̃. Following equations 6 and 10 and 

using a step-size of unity (s=1 in equation 6), the 
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transformation operates over the measurement set to yield the 

vectorised back substitution:  

𝑔𝑖
𝑘 = (𝑅𝑘)−1𝑧̃𝑒

𝑘 (23) 

for k=1,…,K. 

[0038] The second significant extension is to control the 

iteration process over which the method converges to the optimal 

solution set. To do this, the method measures the change in 

information that is gained over the weak observability parameter 

subspace, Sw, each time that a set of track parameters are 

updated. During each iteration, an estimate, 𝑥̂𝑘, of the 

parameters in 𝑥̃𝑘  that are associated with track k are updated 

according to 

𝑥̂𝑖+1
𝑘 = 𝑥̂𝑖

𝑘 + 𝑔𝑖
𝑘, 𝑘 = 1, … , 𝐾 (24) 

[0039] The resulting likelihood function developed over the 

subspace Sw to a conditional probability density function fi(k) by 

assuming a diffuse prior over Sw  and normalizing the result such 

that ∑ 𝑓𝑖(𝑘) = 1𝐾
𝑘=1 . 

𝑓𝑖(𝑘) =
𝑒

−
1

𝜎2𝐽(𝑥̂𝑖
𝑘)

∑ 𝑒
−

1
𝜎2𝐽(𝑥̂𝑖

𝑘)𝐾
𝑘=1

 

(25) 

The Kullback-Leibler divergence is then calculated between the 

probability density function produced in the preceding 

iteration, fi, and its update following the iteration, fi+1. 
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[0040] The Kullback-Leibler divergence is computed as: 

𝐷(𝑓𝑖(𝑘)|𝑓𝑖+1(𝑘)) = ∑ 𝑓𝑖(𝑘)𝑙𝑜𝑔𝐾 (
𝑓𝑖(𝑘)

𝑓𝑖+1(𝑘)
)

𝐾

𝑘=1

 
(26) 

When the change in information falls below a specified 

threshold, 

𝐷(𝑓𝑖(𝑘)|𝑓𝑖+1(𝑘)) < 𝜖, (27) 

the iteration is halted. The information measure is developed 

following Shannon’s practice of applying the logarithm base 

equal to the size of the input alphabet to avoid scaling issues. 

This does not pose difficulty as any base logarithm can be 

applied; that is loga(p) = logb(p)/logb(a). The equivalent 

termination criterion using a logarithmic base of 2 becomes 

𝐷(𝑓𝑖(𝑘)|𝑓𝑖+1(𝑘)) = 𝑙𝑜𝑔2 (
𝛼𝑖+1

𝛼𝑖
) + 𝛼0 ∑ 𝑓𝑖(𝑘)(𝐽(𝑥̂𝑖+1

𝑘 ) − 𝐽(𝑥̂𝑖
𝑘)

𝐾

𝑘=1

) < 𝜖𝑙𝑜𝑔2𝐾 
(28) 

where 

𝛼𝑖 = ∑ 𝑒
−

1
𝜎2𝐽(𝑥̂𝑖

𝑘)

𝐾

𝑘=1

 
(29) 

𝛼𝑖+1 = ∑ 𝑒
−

1
𝜎2𝐽(𝑥̂𝑖+1

𝑘 )

𝐾

𝑘=1

 
(30) 

𝛼0 = 0.5
𝑙𝑜𝑔2(𝑒)

𝜎2
 

(31) 
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With this approach, a fixed termination criterion can be 

applied. The value of ϵ=0.001. 

[0041] A functional diagram of the invention is provided in 

FIG. 5.  This diagram illustrates the dichotomy that is created 

between the strongly and weakly observable state components. In 

the current embodiment bearings are strongly observable state 

components and ranges are weakly observable state components; 

however, other strongly and weakly observable state components 

can be used.  Signal strength could be an additional strongly 

observed component.  An example of an additional weakly 

observable component is target velocity.   

[0042] In FIG. 5 step 30 these strongly and weakly observable 

components are received at the target motion analysis system 24 

from a processor such as 20 of FIG. 1.  In step 32 the weakly 

observable components Sw are utilized to form an analysis grid 

that can be used for parallelizing computation.  Strongly 

observed components Ss are initialized to initial conditions in 

step 34.  In step 36 the initial Ss vectors, Sw analysis grid, 

and Sw values are used to calculate initial Sw probability 

density functions.  

[0043] Dashed region 38 represents computations that are 

performed over the analysis grid formed from the weakly 

observable components Sw in step 32.  (Of course these 

computations can also occur sequentially.)  Calculation of 
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strongly observable component gradients is performed in step 40.  

This step utilizes equation (17) discussed above.  Step 42 

calculates direction of the strong updates utilizing the 

vectorized Householder transformation and back-substitution as 

provided in equation (22). The Ss vectors are updated in step 44 

according to equation (23).   

[0044] After completion of the Sw grid calculations of 38, the 

method determines if calculations are converging to an optimal 

solution set.  In step 46, the Sw probability density functions 

are updated in accordance with equation (24).  Step 48 

calculates the Kullback-Liebler divergence between the Sw 

probability density functions from the prior step and those of 

the current step to determine the change in information over the 

weakly observable data subspace.  This change in information is 

compared against a threshold ϵ in step 50.  (The threshold can 

be either calculated or pre-established in accordance with pre-

established tolerances as discussed above related to equation 

(27)-(31).)  If the change in information is above the threshold 

ϵ, updated parameters are provided to the parallelized routines 

38 in step 52 for additional iterative computation.  If the 

change in information falls below the threshold ϵ the Ss vectors 

and Sw likelihood are provided as output in step 54. 

[0045] An illustration of the impact of the invention is 

provided in FIGS. 6A, 6B, 7A, and 7B. Here, the method is 
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applied to perform smoothing of the endpoint bearings over the 

estimated R1, R2 grid and to construct the area of uncertainty in 

geographic coordinates. FIGS. 6A and 7A provide a geographic 

display of observer and target tracks for a bearings only target 

motion analysis example.  The observer trajectory consists of 

two legs identified as 60A and 60B in FIG. 6A and as 70A and 70B 

in FIG. 7A. Endpoint bearings B1 and B2 emanate from the terminal 

points of the observer trajectory. The true target track is 

shown as 62 in FIG. 6A and as 72 in FIG. 7A. FIGS. 6B and 7B 

provide an illustration of the RMS cost surface developed as a 

function of the endpoint ranges. The minimal cost region 66 

shows up as the long slightly tilted region comprised by the 

collection of ’x’s at the center of the fan of expanding wedges. 

FIGS. 6A and 6B illustrate the result obtained prior to 

application of the method where bearings are tied down 

arbitrarily. The minimum RMS solution is indicated as track line 

64 that broaches the endpoint bearings in the geometry plot. The 

corresponding AOU is illustrated as the set of squares on the 

second bearing line B2. FIG. 7A illustrates the impact of the 

method.  Once the current method has calculated the endpoint 

bearings at each track point (i.e., each range 1 and range 2 

node within the range grid), the set of points in each of the 

RMS shading bands expands to provide a more accurate depiction 

of the uncertainty in the range estimates. The improvement in 
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the estimated target track 74 due to the endpoint smoothing is 

evident in the figure. Also note that each successive 

sensitivity level has increased in size. The inner region 

identified by squares comprising the AOU is shown to include the 

true target track whereas in FIG. 6A, it did not.  In FIG. 7B, 

the minimal cost region is indicated by reference number 76. 

[0046] The utilization of this method has several advantages 

over traditional data processing methods.  By constructing the 

track-measurement-parameter multi-dimensional array, vectorized 

numerical operations can be applied over the ensemble of 

candidate target tracks to increase the efficiency of the 

algorithm. By decomposing the target state vector into strongly 

and weakly observable components, the sensitivity of the 

objective function to additional modeling parameters can be 

evaluated by adjoining these parameters to the strong state 

components and applying gradient based estimation methods. By 

devising an estimation termination criteria that measures the 

change of information content over the weakly observable 

parameter subspace, parameter estimation is allowed to converge 

only for those track candidates that actually influence the 

determination of the uncertainty region boundary. 

[0047] The current method allows a more robust uncertainty 

representation with a reasonable computational burden. The 

novelty here is in the fact that maximum likelihood estimation 
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is applied simultaneously to the collection of feasible tracks 

rather than individually to each track with no regard to 

convergence properties for the track. This significantly 

expedites the convergence of the overall algorithm. 

[0048] It will be understood that many additional changes in 

the details, materials, steps and arrangement of parts, which 

have been herein described and illustrated in order to explain 

the nature of the invention, may be made by those skilled in the 

art within the principle and scope of the invention as expressed 

in the appended claims. 

[0049] The foregoing description of the preferred embodiments 

of the invention has been presented for purposes of illustration 

and description only. It is not intended to be exhaustive, nor 

to limit the invention to the precise form disclosed; and 

obviously, many modification and variations are possible in 

light of the above teaching. Such modifications and variations 

that may be apparent to a person skilled in the art are intended 

to be included within the scope of this invention as defined by 

the accompanying claims. 
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UNCERTAINTY PREDICTION IN 

PASSIVE TARGET MOTION ANALYSIS 

ABSTRACT OF THE DISCLOSURE 

A method for target motion analysis for calculating the 

track between an observer and a target and estimating its 

uncertainty includes initializing strongly observable state 

components into strong state vectors and weakly observable state 

components to form a weak state analysis grid.  Initial 

probability density functions are calculated from all 

components.  The method then iteratively calculates strong state 

gradients, target track direction, and updates strong state 

vectors over the analysis grid.  Probability density functions 

are recalculated.  Calculations are reiterated if the 

probability density functions change more than an information 

threshold.  The strong state vectors and weak state probability 

density functions are provided as output if the information 

threshold is not exceeded. 

 










	300118_1.pdf
	300118_2.pdf
	300118_3.pdf
	300118_4.pdf

